Accelerator Physics Issues at the SSC

Mike Syphers
Beams Div. / FNAL

A view from Waxahachie...

A List of Issues for VLHC...

- Magnet Aperture
- Lattice Design
- Synchrotron Radiation
- Instabilities/feedback
- Longitudinal Parameters
- Beam-beam Effects
- Emittance Evolution/Control
- Energy Deposition

... all issues present in SSC, LHC designs

At 50 TeV, mostly just gets a bit harder...

- Synchrotron radiated power into magnets
- Stored beam energy
- Instability thresholds
- Ground motion sensitivity (motion amplitude vs. beam size)
- Etc...
 - ... but, some possible advantages, especially for high field options:
- Luminosity enhancement
- Simplified IR designs
- Integrated luminosity vs. initial emittances

Magnet Aperture and Basic Parameters of the SSC

Beam size vs. pipe size vs. coil diameter

- Cell length
- Phase advance
- Correctors
- Alignment

For phase advance

$$\mu = \sin^{-1}(L/2F) = 90^{\circ}$$

$$\hat{\beta} = 3.41 L$$

$$\hat{D} = 2.71 \frac{L^2}{R}$$

Where

L = half cell length,

R = ave. radius of ring

1986 Blue Book -- L=96m, $\mu = 60^{\circ}$, $d_c = 4$ cm

1987 ISP Design -- L=114m, $\mu = 90^{\circ}$, $d_c = 4$ cm

1990 White Book -- L=90m, $\mu = 90^{\circ}$, $d_c = 5$ cm

Linear Aperture and Dynamic Aperture

Tune Shift Smear Stability Limits

Accelerator Experiments (E778) at the Tevatron

⇒ Gave (some) confidence in computational abilities

Random field errors were expected to be as (more?) important as systematic errors

Tune shift due to systematic multipole, b_n :

n	Tune shift, Δv
1	$<\beta b_1>/2$ $< b_2\beta D>\delta$
2	
3	$3 < b_3 \beta^2 > \varepsilon/8 + 3 < b_3 \beta D^2 > \delta^2/2$
4	$3 < b_4 \beta^2 D > \varepsilon \delta/2 + 2 < b_4 \beta D^3 > \delta^3$

 δ = rel. momentum, ϵ = emittance

Last changes (late 1989) made in direction of increased design conservatism...

reliability, availability, commissioning, ...

- L = 114.25 m ----> 90 m
 - reduces beam size
 - increases linear aperture
- $E_{ini} = 1 \text{ TeV} \longrightarrow 2 \text{ TeV}$
 - reduces b₂, chromaticity at injection
 - increases dynamic aperture
- $d_c = 4 \text{ cm} ----> 5 \text{ cm}$
 - increases linear/dynamic aperture
 - increases cost...

Considered:

recent experiments

diffusion studies (1989) in Tevatron, SpS aperture studies (1987-8) in Main Ring typics

recent tracking studies

Main Ring, SpS simulations 1988-89 SSC tracking (10⁵ turns)

Lattice Design

Rings:

Arcs + IR/UT modules; dispersion suppressors

- all lengths in units of bunch spacing (5 m)
- •IR/UT/DS lengths multiples of half cell length

Arcs:

standard FODO cells

- standard magnets; occasional short dipoles with space left for cryo-equipment, power feeds, etc.
- dispersion suppressors at ends of arcs warm/free space
 - •Added later, to provide space for future upgrades (power/feed points, dampers,

instrumentation, spin devices, etc., ??)

*** modularity ***

Utility Regions:

• Injection, extraction, rf, instrumentation

Interaction Regions:

• Low beta, orbit/tune/chromaticity control, dispersion, crossing angle

Generation of "Final" Collider Lattice

- The 10-F lattice left out magnets around the ring to give space for future uses
- "missing magnets" next to F and D quads
- Also, in center locations of half cells
- Positions were massaged to match site conditions

Principle of SSC IR Design

- IR design used triplet, not tuned during low-beta squeeze
- Outer quads used to change intermediate focal point
- Thus, could perform squeeze independently on each beam
- M = -I section handled vertical dispersion
- Local steering, sextupoles handled crossing angle, chromatic effects
- IR Working Group met weekly -- optics, correction schemes, hardware, etc.

Other Issues

- Local coupling and its effects
 - Global and local decoupling schemes
- Alignment Issues
 - Accuracy of local smoothing of magnet placement, roll angles, etc.
 - Expected rms quad placement: 0.25 mm
- Ground Motion
 - Long term motion, re-alignment, ATL-law

If
$$A = 10^{-5} \mu m^2/m/sec$$
, $L = 90 m$, then after 1 year,

A T L

$$\langle x^2 \rangle = (10^{-5})(\pi \ 10^7)(90) \ \mu m^2$$

or, $x_{rms} = 0.25 \ mm$

Synchrotron Radiation

Impacts on

- cryo system, vacuum system
- beam screen/liner design
- (and hence, magnet design...)
- At SSC, SR to deliver about 0.1 W/m into dipole magnets
- Note:
 - Low-field (Snowmass): 0.09 W/m
 - Hi-field (Snowmass): 2.3 W/m

• Enhancement of luminosity

- Some effect would have been seen at SSC
- Characteristic damping time about 1 day

Instabilities and Cures

- •resistive wall, head-tail, multibunch, etc.

 Beam pipe requirements: diameter, material, etc.
- ring-wide impedance budget and its control
 beam pipe AND rf cavities, BPM's, kickers, septa,
 magnet interconnects, etc.: all monitored very
 carefully
 Impedance Committee formed, met weekly
- feedback systems
 Injection damper systems
 High energy, bunch-by-bunch damping systems

Beam-beam Effects

- Head-on incoherent tune shift tolerance $\xi \approx 0.002$ per crossing (2-4 per turn)
- Parasitic crossings long range coherent tune shifts, compensation gives total $\Delta \nu \approx 0.01$ for 4 IR's
- Diffusion effects -- small Koga, Tajima, others

Emittance Growth and Control

- injection errors e.g., $\Delta x/\sigma_x = 1$ mm/0.5mm ---> 3x emitt. Growth
- ground motion, power supply ripple, RF noise, etc.
- Major impact on injector chain design, specification
- Emittance Committee formed
 - met weekly
 - review designs of various systems

Emittance Budget assigned to each accelerator:

<u>Injector</u>	emittance specification
LINAC	(initial $\varepsilon_{\rm n}$ < 0.5 π mm-mr)
LEB	$0.6 \pi \text{ mm-mr}$
MEB	$0.7 \pi \text{ mm-mr}$
HEB	$0.8 \pi \text{ mm-mr}$

Collider 1.0
$$\pi$$
 mm-mr (6 π , 95%)

Energy Deposition

- Beam induced radiation effects
- Beam Abort Systems
- Beam Halo Scraping Systems

Comparisons:

```
Tevatron: 1 \text{ TeV } \times 2e13 = 0.003 \text{ GJ}
SSC: 20 \text{ TeV } \times 1e14 = 0.3 \text{ GJ}
LHC 7 \text{ TeV } \times 5e14 = 0.6 \text{ GJ}
VLHC (hi) 50 \text{ TeV } \times 1e14 = 0.9 \text{ GJ}
VLHC (low) 50 \text{ TeV } \times 1e15 = 9.0 \text{ GJ}
```

• Interaction Region Element Protection

power delivered into IR quads:

20 TeV x 10³³ cm⁻²sec⁻¹ x 100 mbarn

320 W in each direction

Schematic geometrical configuration used in energy deposition calculations

Table 1: Maximum energy deposition dose rate D' and annual dose D in the superconducting coils of the SSC low- β IR beam elements. Interaction rate is $10^8/\text{sec}$ at $\mathcal{L}=10^{33}$ cm $^{-2}$ sec $^{-1}$. Here, the operational year is taken to be 10^7 sec. From Baishev, Drozhdin, Mokhov (SSCL-306).

Name	Distance	D'	D
	from IP (m)	$(\mathrm{mW/gm})$	(MGy/year)
IP	0		
QL1	35	0.32	3.20
QL2a	47	0.19	1.92
QL2b	59	0.22	2.22
QL3	73	0.10	0.96
BV1	85	0.01	0.064
BV1	91	0.01	0.11
BV1	97	0.02	0.21

Table 2: Radiation resistance of selected materials. From Baishev, et al.

Material	Tolerable Dose (MGy)
Kapton, polyimide	50
Kapton fllm	
Carbon-flber reinforced tube	
Carbon-flber-fllled epoxy rods	
G11 CR tube	20
PK102 (epoxy)	10
Crest 7450 epoxy	
Fiberglass (epoxy impregnated)	
Fiberglass rein. polyester resin	5
Aluminum mylar	2
Superinsulation	2
Electrical insulation	0.1-10
Tefzel adhesive	0.5
Cerex spunbonded polyester	0.06
Te° on	0.01

Specification Documents

- "Controlled Documents" maintained to keep track of all element specifications.
- Once "signed off," then took act of Configuration Management Control Board to make changes.

Future Directions...

- What is minimum beam pipe aperture (include beam screen) which can be tolerated?
- Can *sparse* corrector schemes be achieved?
- Can fault-tolerant correction schemes be achieved, improving reliability?
- Does SR at high field *truly* lessen the field quality requirements at injection?
- Need to look for new and innovative ideas...
 - 4-bore full-range magnet? (Gupta)
 - Low-field injector with high-field storage ring??(Dugan)
 - _ ??????